Python深入04 闭包
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
闭包 (closure)是函数式编程的重要的语法结构。函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式)。在面向过程编程中,我们见到过函数 (function);在面向对象编程中,我们见过对象 (object)。函数和对象的根本目的是以某种逻辑方式组织代码,并提高代码的可重复使用性(reusability)。闭包也是一种组织代码的结构,它同样提高了代码的可重复使用性。
不同的语言实现闭包的方式不同。Python 以函数对象为基础,为闭包这一语法结构提供支持的 ( 我们在特殊方法与多范式中,已经多次看到 Python 使用对象来实现一些特殊的语法 )。Python 一切皆对象,函数这一语法结构也是一个对象。在函数对象中,我们像使用一个普通对象一样使用函数对象,比如更改函数对象的名字,或者将函数对象作为参数进行传递。
函数对象的作用域
和其他对象一样,函数对象也有其存活的范围,也就是函数对象的作用域。函数对象是使用def语句定义的,函数对象的作用域与def所在的层级相同。比如下面代码,我们在 line_conf 函数的隶属范围内定义的函数 line,就只能在 line_conf 的隶属范围内调用。
def line_conf():
def line(x):
return 2*x+1
print(line(5)) # within the scope
line_conf()
print(line(5)) # out of the scope
line 函数定义了一条直线 (y = 2x + 1)。可以看到,在 line_conf() 中可以调用 line 函数,而在作用域之外调用 line 将会有下面的错误:
NameError: name 'line' is not defined
说明这时已经在作用域之外。
同样,如果使用lambda定义函数,那么函数对象的作用域与 lambda 所在的层级相同。
闭包
函数是一个对象,所以可以作为某个函数的返回结果。
def line_conf():
def line(x):
return 2*x+1
return line # return a function object
my_line = line_conf()
print(my_line(5))
上面的代码可以成功运行。line_conf 的返回结果被赋给 line 对象。上面的代码将打印 11。
如果 line() 的定义中引用了外部的变量,会发生什么呢?
def line_conf():
b = 15
def line(x):
return 2*x+b
return line # return a function object
b = 5
my_line = line_conf()
print(my_line(5))
我们可以看到,line 定义的隶属程序块中引用了高层级的变量 b,但 b 信息存在于 line 的定义之外 (b 的定义并不在 line 的隶属程序块中)。我们称 b 为 line 的环境变量。事实上,line 作为 line_conf 的返回值时,line 中已经包括 b 的取值 (尽管 b 并不隶属于 line)。
上面的代码将打印 25,也就是说,line 所参照的 b 值是函数对象定义时可供参考的 b 值,而不是使用时的 b 值。
一个函数和它的环境变量合在一起,就构成了一个闭包 (closure)。在 Python 中,所谓的闭包是一个包含有环境变量取值的函数对象。环境变量取值被保存在函数对象的__closure__属性中。比如下面的代码:
def line_conf():
b = 15
def line(x):
return 2*x+b
return line # return a function object
b = 5
my_line = line_conf()
print(my_line.__closure__)
print(my_line.__closure__[0].cell_contents)
__closure__ 里包含了一个元组 (tuple)。这个元组中的每个元素是cell类型的对象。我们看到第一个 cell 包含的就是整数 15,也就是我们创建闭包时的环境变量 b 的取值。
下面看一个闭包的实际例子:
def line_conf(a, b):
def line(x):
return a*x + b
return line
line1 = line_conf(1, 1)
line2 = line_conf(4, 5)
print(line1(5), line2(5))
这个例子中,函数 line 与环境变量 a,b 构成闭包。在创建闭包的时候,我们通过 line_conf 的参数 a,b 说明了这两个环境变量的取值,这样,我们就确定了函数的最终形式 (y = x + 1 和 y = 4x + 5)。我们只需要变换参数 a,b,就可以获得不同的直线表达函数。由此,我们可以看到,闭包也具有提高代码可复用性的作用。
如果没有闭包,我们需要每次创建直线函数的时候同时说明 a,b,x。这样,我们就需要更多的参数传递,也减少了代码的可移植性。利用闭包,我们实际上创建了泛函。line 函数定义一种广泛意义的函数。这个函数的一些方面已经确定 (必须是直线),但另一些方面 (比如 a 和 b 参数待定)。随后,我们根据 line_conf 传递来的参数,通过闭包的形式,将最终函数确定下来。
闭包与并行运算
闭包有效的减少了函数所需定义的参数数目。这对于并行运算来说有重要的意义。在并行运算的环境下,我们可以让每台电脑负责一个函数,然后将一台电脑的输出和下一台电脑的输入串联起来。最终,我们像流水线一样工作,从串联的电脑集群一端输入数据,从另一端输出数据。这样的情境最适合只有一个参数输入的函数。闭包就可以实现这一目的。
并行运算正称为一个热点。这也是函数式编程又热起来的一个重要原因。函数式编程早在 1950 年代就已经存在,但应用并不广泛。然而,我们上面描述的流水线式的工作并行集群过程,正适合函数式编程。由于函数式编程这一天然优势,越来越多的语言也开始加入对函数式编程范式的支持。
欢迎继续阅读“Python 快速教程”